package server import ( "bufio" "bytes" "context" "encoding/json" "fmt" "github.com/gabriel-vasile/mimetype" "github.com/pkg/errors" "github.com/pterodactyl/wings/config" "github.com/pterodactyl/wings/server/backup" ignore "github.com/sabhiram/go-gitignore" "golang.org/x/sync/errgroup" "io" "io/ioutil" "os" "path" "path/filepath" "sort" "strconv" "strings" "sync" "sync/atomic" "time" ) // Error returned when there is a bad path provided to one of the FS calls. type PathResolutionError struct{} // Returns the error response in a string form that can be more easily consumed. func (pre PathResolutionError) Error() string { return "invalid path resolution" } func IsPathResolutionError(err error) bool { _, ok := err.(PathResolutionError) return ok } type Filesystem struct { Server *Server cacheDiskMu sync.Mutex } // Returns the root path that contains all of a server's data. func (fs *Filesystem) Path() string { return filepath.Join(config.Get().System.Data, fs.Server.Id()) } // Normalizes a directory being passed in to ensure the user is not able to escape // from their data directory. After normalization if the directory is still within their home // path it is returned. If they managed to "escape" an error will be returned. // // This logic is actually copied over from the SFTP server code. Ideally that eventually // either gets ported into this application, or is able to make use of this package. func (fs *Filesystem) SafePath(p string) (string, error) { var nonExistentPathResolution string // Start with a cleaned up path before checking the more complex bits. r := fs.unsafeFilePath(p) // At the same time, evaluate the symlink status and determine where this file or folder // is truly pointing to. p, err := filepath.EvalSymlinks(r) if err != nil && !os.IsNotExist(err) { return "", err } else if os.IsNotExist(err) { // The requested directory doesn't exist, so at this point we need to iterate up the // path chain until we hit a directory that _does_ exist and can be validated. parts := strings.Split(filepath.Dir(r), "/") var try string // Range over all of the path parts and form directory pathings from the end // moving up until we have a valid resolution or we run out of paths to try. for k := range parts { try = strings.Join(parts[:(len(parts)-k)], "/") if !fs.unsafeIsInDataDirectory(try) { break } t, err := filepath.EvalSymlinks(try) if err == nil { nonExistentPathResolution = t break } } } // If the new path doesn't start with their root directory there is clearly an escape // attempt going on, and we should NOT resolve this path for them. if nonExistentPathResolution != "" { if !fs.unsafeIsInDataDirectory(nonExistentPathResolution) { return "", PathResolutionError{} } // If the nonExistentPathResolution variable is not empty then the initial path requested // did not exist and we looped through the pathway until we found a match. At this point // we've confirmed the first matched pathway exists in the root server directory, so we // can go ahead and just return the path that was requested initially. return r, nil } // If the requested directory from EvalSymlinks begins with the server root directory go // ahead and return it. If not we'll return an error which will block any further action // on the file. if fs.unsafeIsInDataDirectory(p) { return p, nil } return "", PathResolutionError{} } // Generate a path to the file by cleaning it up and appending the root server path to it. This // DOES NOT guarantee that the file resolves within the server data directory. You'll want to use // the fs.unsafeIsInDataDirectory(p) function to confirm. func (fs *Filesystem) unsafeFilePath(p string) string { // Calling filepath.Clean on the joined directory will resolve it to the absolute path, // removing any ../ type of resolution arguments, and leaving us with a direct path link. // // This will also trim the existing root path off the beginning of the path passed to // the function since that can get a bit messy. return filepath.Clean(filepath.Join(fs.Path(), strings.TrimPrefix(p, fs.Path()))) } // Check that that path string starts with the server data directory path. This function DOES NOT // validate that the rest of the path does not end up resolving out of this directory, or that the // targeted file or folder is not a symlink doing the same thing. func (fs *Filesystem) unsafeIsInDataDirectory(p string) bool { return strings.HasPrefix(strings.TrimSuffix(p, "/")+"/", strings.TrimSuffix(fs.Path(), "/")+"/") } // Helper function to keep some of the codebase a little cleaner. Returns a "safe" version of the path // joined with a file. This is important because you cannot just assume that appending a file to a cleaned // path will result in a cleaned path to that file. For example, imagine you have the following scenario: // // my_bad_file -> symlink:/etc/passwd // // cleaned := SafePath("../../etc") -> "/" // filepath.Join(cleaned, my_bad_file) -> "/my_bad_file" // // You might think that "/my_bad_file" is fine since it isn't pointing to the original "../../etc/my_bad_file". // However, this doesn't account for symlinks where the file might be pointing outside of the directory, so // calling a function such as Chown against it would chown the symlinked location, and not the file within the // Wings daemon. func (fs *Filesystem) SafeJoin(dir string, f os.FileInfo) (string, error) { if f.Mode()&os.ModeSymlink != 0 { return fs.SafePath(filepath.Join(dir, f.Name())) } return filepath.Join(dir, f.Name()), nil } // Executes the fs.SafePath function in parallel against an array of paths. If any of the calls // fails an error will be returned. func (fs *Filesystem) ParallelSafePath(paths []string) ([]string, error) { var cleaned []string // Simple locker function to avoid racy appends to the array of cleaned paths. var m = new(sync.Mutex) var push = func(c string) { m.Lock() cleaned = append(cleaned, c) m.Unlock() } // Create an error group that we can use to run processes in parallel while retaining // the ability to cancel the entire process immediately should any of it fail. g, ctx := errgroup.WithContext(context.Background()) // Iterate over all of the paths and generate a cleaned path, if there is an error for any // of the files, abort the process. for _, p := range paths { // Create copy so we can use it within the goroutine correctly. pi := p // Recursively call this function to continue digging through the directory tree within // a seperate goroutine. If the context is canceled abort this process. g.Go(func() error { select { case <-ctx.Done(): return ctx.Err() default: // If the callback returns true, go ahead and keep walking deeper. This allows // us to programatically continue deeper into directories, or stop digging // if that pathway knows it needs nothing else. if c, err := fs.SafePath(pi); err != nil { return err } else { push(c) } return nil } }) } // Block until all of the routines finish and have returned a value. return cleaned, g.Wait() } // Determines if the directory a file is trying to be added to has enough space available // for the file to be written to. // // Because determining the amount of space being used by a server is a taxing operation we // will load it all up into a cache and pull from that as long as the key is not expired. func (fs *Filesystem) HasSpaceAvailable() bool { space := fs.Server.Build().DiskSpace size, err := fs.getCachedDiskUsage() if err != nil { fs.Server.Log().WithField("error", err).Warn("failed to determine root server directory size") } // Determine if their folder size, in bytes, is smaller than the amount of space they've // been allocated. fs.Server.Proc().SetDisk(size) // If space is -1 or 0 just return true, means they're allowed unlimited. // // Technically we could skip disk space calculation because we don't need to check if the server exceeds it's limit // but because this method caches the disk usage it would be best to calculate the disk usage and always // return true. if space <= 0 { return true } return (size / 1000.0 / 1000.0) <= space } // Internal helper function to allow other parts of the codebase to check the total used disk space // as needed without overly taxing the system. This will prioritize the value from the cache to avoid // excessive IO usage. We will only walk the filesystem and determine the size of the directory if there // is no longer a cached value. func (fs *Filesystem) getCachedDiskUsage() (int64, error) { // Obtain an exclusive lock on this process so that we don't unintentionally run it at the same // time as another running process. Once the lock is available it'll read from the cache for the // second call rather than hitting the disk in parallel. // // This effectively the same speed as running this call in parallel since this cache will return // instantly on the second call. fs.cacheDiskMu.Lock() defer fs.cacheDiskMu.Unlock() if x, exists := fs.Server.cache.Get("disk_used"); exists { return x.(int64), nil } // If there is no size its either because there is no data (in which case running this function // will have effectively no impact), or there is nothing in the cache, in which case we need to // grab the size of their data directory. This is a taxing operation, so we want to store it in // the cache once we've gotten it. size, err := fs.DirectorySize("/") // Always cache the size, even if there is an error. We want to always return that value // so that we don't cause an endless loop of determining the disk size if there is a temporary // error encountered. fs.Server.cache.Set("disk_used", size, time.Second*60) return size, err } // Determines the directory size of a given location by running parallel tasks to iterate // through all of the folders. Returns the size in bytes. This can be a fairly taxing operation // on locations with tons of files, so it is recommended that you cache the output. func (fs *Filesystem) DirectorySize(dir string) (int64, error) { var size int64 err := fs.Walk(dir, func(_ string, f os.FileInfo, err error) error { if err != nil { return fs.handleWalkerError(err, f) } if !f.IsDir() { atomic.AddInt64(&size, f.Size()) } return nil }) return size, err } // Reads a file on the system and returns it as a byte representation in a file // reader. This is not the most memory efficient usage since it will be reading the // entirety of the file into memory. func (fs *Filesystem) Readfile(p string) (io.Reader, error) { cleaned, err := fs.SafePath(p) if err != nil { return nil, err } b, err := ioutil.ReadFile(cleaned) if err != nil { return nil, err } return bytes.NewReader(b), nil } // Writes a file to the system. If the file does not already exist one will be created. // // @todo should probably have a write lock here so we don't write twice at once. func (fs *Filesystem) Writefile(p string, r io.Reader) error { cleaned, err := fs.SafePath(p) if err != nil { return errors.WithStack(err) } // If the file does not exist on the system already go ahead and create the pathway // to it and an empty file. We'll then write to it later on after this completes. if stat, err := os.Stat(cleaned); err != nil && os.IsNotExist(err) { if err := os.MkdirAll(filepath.Dir(cleaned), 0755); err != nil { return errors.WithStack(err) } if err := fs.Chown(filepath.Dir(cleaned)); err != nil { return errors.WithStack(err) } } else if err != nil { return errors.WithStack(err) } else if stat.IsDir() { return errors.New("cannot use a directory as a file for writing") } // This will either create the file if it does not already exist, or open and // truncate the existing file. file, err := os.OpenFile(cleaned, os.O_RDWR|os.O_CREATE|os.O_TRUNC, 0644) if err != nil { return errors.WithStack(err) } defer file.Close() // Create a new buffered writer that will write to the file we just opened // and stream in the contents from the reader. w := bufio.NewWriter(file) buf := make([]byte, 1024) for { n, err := r.Read(buf) if err != nil && err != io.EOF { return errors.WithStack(err) } if n == 0 { break } if _, err := w.Write(buf[:n]); err != nil { return errors.WithStack(err) } } if err := w.Flush(); err != nil { return errors.WithStack(err) } // Finally, chown the file to ensure the permissions don't end up out-of-whack // if we had just created it. return fs.Chown(cleaned) } // Defines the stat struct object. type Stat struct { Info os.FileInfo Mimetype string } func (s *Stat) MarshalJSON() ([]byte, error) { return json.Marshal(struct { Name string `json:"name"` Created string `json:"created"` Modified string `json:"modified"` Mode string `json:"mode"` Size int64 `json:"size"` Directory bool `json:"directory"` File bool `json:"file"` Symlink bool `json:"symlink"` Mime string `json:"mime"` }{ Name: s.Info.Name(), Created: s.CTime().Format(time.RFC3339), Modified: s.Info.ModTime().Format(time.RFC3339), Mode: s.Info.Mode().String(), Size: s.Info.Size(), Directory: s.Info.IsDir(), File: !s.Info.IsDir(), Symlink: s.Info.Mode().Perm()&os.ModeSymlink != 0, Mime: s.Mimetype, }) } // Stats a file or folder and returns the base stat object from go along with the // MIME data that can be used for editing files. func (fs *Filesystem) Stat(p string) (*Stat, error) { cleaned, err := fs.SafePath(p) if err != nil { return nil, err } return fs.unsafeStat(cleaned) } func (fs *Filesystem) unsafeStat(p string) (*Stat, error) { s, err := os.Stat(p) if err != nil { return nil, err } var m *mimetype.MIME if !s.IsDir() { m, err = mimetype.DetectFile(p) if err != nil { return nil, err } } st := &Stat{ Info: s, Mimetype: "inode/directory", } if m != nil { st.Mimetype = m.String() } return st, nil } // Creates a new directory (name) at a specified path (p) for the server. func (fs *Filesystem) CreateDirectory(name string, p string) error { cleaned, err := fs.SafePath(path.Join(p, name)) if err != nil { return errors.WithStack(err) } return os.MkdirAll(cleaned, 0755) } // Moves (or renames) a file or directory. func (fs *Filesystem) Rename(from string, to string) error { cleanedFrom, err := fs.SafePath(from) if err != nil { return errors.WithStack(err) } cleanedTo, err := fs.SafePath(to) if err != nil { return errors.WithStack(err) } if f, err := os.Stat(cleanedFrom); err != nil { return errors.WithStack(err) } else { d := cleanedTo if !f.IsDir() { d = strings.TrimSuffix(d, path.Base(cleanedTo)) } // Ensure that the directory we're moving into exists correctly on the system. if mkerr := os.MkdirAll(d, 0644); mkerr != nil { return errors.WithStack(mkerr) } } return os.Rename(cleanedFrom, cleanedTo) } // Recursively iterates over a file or directory and sets the permissions on all of the // underlying files. Iterate over all of the files and directories. If it is a file just // go ahead and perform the chown operation. Otherwise dig deeper into the directory until // we've run out of directories to dig into. func (fs *Filesystem) Chown(path string) error { cleaned, err := fs.SafePath(path) if err != nil { return errors.WithStack(err) } uid := config.Get().System.User.Uid gid := config.Get().System.User.Gid // Start by just chowning the initial path that we received. if err := os.Chown(cleaned, uid, gid); err != nil { return errors.WithStack(err) } // If this is not a directory we can now return from the function, there is nothing // left that we need to do. if st, _ := os.Stat(cleaned); !st.IsDir() { return nil } // If this was a directory, begin walking over its contents recursively and ensure that all // of the subfiles and directories get their permissions updated as well. return fs.Walk(cleaned, func(path string, f os.FileInfo, err error) error { if err != nil { return fs.handleWalkerError(err, f) } // Do not attempt to chmod a symlink. Go's os.Chown function will affect the symlink // so if it points to a location outside the data directory the user would be able to // (un)intentionally modify that files permissions. if f.Mode()&os.ModeSymlink != 0 { return nil } return os.Chown(path, uid, gid) }) } // Copies a given file to the same location and appends a suffix to the file to indicate that // it has been copied. // // @todo need to get an exclusive lock on the file. func (fs *Filesystem) Copy(p string) error { cleaned, err := fs.SafePath(p) if err != nil { return errors.WithStack(err) } if s, err := os.Stat(cleaned); err != nil { return errors.WithStack(err) } else if s.IsDir() || !s.Mode().IsRegular() { // If this is a directory or not a regular file, just throw a not-exist error // since anything calling this function should understand what that means. return os.ErrNotExist } base := filepath.Base(cleaned) relative := strings.TrimSuffix(strings.TrimPrefix(cleaned, fs.Path()), base) extension := filepath.Ext(base) name := strings.TrimSuffix(base, filepath.Ext(base)) // Begin looping up to 50 times to try and create a unique copy file name. This will take // an input of "file.txt" and generate "file copy.txt". If that name is already taken, it will // then try to write "file copy 2.txt" and so on, until reaching 50 loops. At that point we // won't waste anymore time, just use the current timestamp and make that copy. // // Could probably make this more efficient by checking if there are any files matching the copy // pattern, and trying to find the highest number and then incrementing it by one rather than // looping endlessly. var i int copySuffix := " copy" for i = 0; i < 51; i++ { if i > 0 { copySuffix = " copy " + strconv.Itoa(i) } tryName := fmt.Sprintf("%s%s%s", name, copySuffix, extension) tryLocation, err := fs.SafePath(path.Join(relative, tryName)) if err != nil { return errors.WithStack(err) } // If the file exists, continue to the next loop, otherwise we're good to start a copy. if _, err := os.Stat(tryLocation); err != nil && !os.IsNotExist(err) { return errors.WithStack(err) } else if os.IsNotExist(err) { break } if i == 50 { copySuffix = "." + time.Now().Format(time.RFC3339) } } finalPath, err := fs.SafePath(path.Join(relative, fmt.Sprintf("%s%s%s", name, copySuffix, extension))) if err != nil { return errors.WithStack(err) } source, err := os.Open(cleaned) if err != nil { return errors.WithStack(err) } defer source.Close() dest, err := os.Create(finalPath) if err != nil { return errors.WithStack(err) } defer dest.Close() if _, err := io.Copy(dest, source); err != nil { return errors.WithStack(err) } return nil } // Deletes a file or folder from the system. Prevents the user from accidentally // (or maliciously) removing their root server data directory. func (fs *Filesystem) Delete(p string) error { // This is one of the few (only?) places in the codebase where we're explictly not using // the SafePath functionality when working with user provided input. If we did, you would // not be able to delete a file that is a symlink pointing to a location outside of the data // directory. // // We also want to avoid resolving a symlink that points _within_ the data directory and thus // deleting the actual source file for the symlink rather than the symlink itself. For these // purposes just resolve the actual file path using filepath.Join() and confirm that the path // exists within the data directory. resolved := fs.unsafeFilePath(p) if !fs.unsafeIsInDataDirectory(resolved) { return PathResolutionError{} } // Block any whoopsies. if resolved == fs.Path() { return errors.New("cannot delete root server directory") } return os.RemoveAll(resolved) } // Lists the contents of a given directory and returns stat information about each // file and folder within it. func (fs *Filesystem) ListDirectory(p string) ([]*Stat, error) { cleaned, err := fs.SafePath(p) if err != nil { return nil, err } files, err := ioutil.ReadDir(cleaned) if err != nil { return nil, err } var wg sync.WaitGroup // You must initialize the output of this directory as a non-nil value otherwise // when it is marshaled into a JSON object you'll just get 'null' back, which will // break the panel badly. out := make([]*Stat, len(files)) // Iterate over all of the files and directories returned and perform an async process // to get the mime-type for them all. for i, file := range files { wg.Add(1) go func(idx int, f os.FileInfo) { defer wg.Done() var m *mimetype.MIME var d = "inode/directory" if !f.IsDir() { cleanedp, _ := fs.SafeJoin(cleaned, f) if cleanedp != "" { m, _ = mimetype.DetectFile(filepath.Join(cleaned, f.Name())) } else { // Just pass this for an unknown type because the file could not safely be resolved within // the server data path. d = "application/octet-stream" } } st := &Stat{ Info: f, Mimetype: d, } if m != nil { st.Mimetype = m.String() } out[idx] = st }(i, file) } wg.Wait() // Sort the output alphabetically to begin with since we've run the output // through an asynchronous process and the order is gonna be very random. sort.SliceStable(out, func(i, j int) bool { if out[i].Info.Name() == out[j].Info.Name() || out[i].Info.Name() > out[j].Info.Name() { return true } return false }) // Then, sort it so that directories are listed first in the output. Everything // will continue to be alphabetized at this point. sort.SliceStable(out, func(i, j int) bool { return out[i].Info.IsDir() }) return out, nil } // Ensures that the data directory for the server instance exists. func (fs *Filesystem) EnsureDataDirectory() error { if _, err := os.Stat(fs.Path()); err != nil && !os.IsNotExist(err) { return errors.WithStack(err) } else if err != nil { // Create the server data directory because it does not currently exist // on the system. if err := os.MkdirAll(fs.Path(), 0700); err != nil { return errors.WithStack(err) } } return nil } // Given a directory, iterate through all of the files and folders within it and determine // if they should be included in the output based on an array of ignored matches. This uses // standard .gitignore formatting to make that determination. // // If no ignored files are passed through you'll get the entire directory listing. func (fs *Filesystem) GetIncludedFiles(dir string, ignored []string) (*backup.IncludedFiles, error) { cleaned, err := fs.SafePath(dir) if err != nil { return nil, err } i, err := ignore.CompileIgnoreLines(ignored...) if err != nil { return nil, err } // Walk through all of the files and directories on a server. This callback only returns // files found, and will keep walking deeper and deeper into directories. inc := new(backup.IncludedFiles) if err := fs.Walk(cleaned, func(p string, f os.FileInfo, err error) error { if err != nil { return fs.handleWalkerError(err, f) } // Avoid unnecessary parsing if there are no ignored files, nothing will match anyways // so no reason to call the function. if len(ignored) == 0 || !i.MatchesPath(strings.TrimPrefix(p, fs.Path()+"/")) { inc.Push(&f, p) } // We can't just abort if the path is technically ignored. It is possible there is a nested // file or folder that should not be excluded, so in this case we need to just keep going // until we get to a final state. return nil }); err != nil { return nil, err } return inc, nil } // Compresses all of the files matching the given paths in the specified directory. This function // also supports passing nested paths to only compress certain files and folders when working in // a larger directory. This effectively creates a local backup, but rather than ignoring specific // files and folders, it takes an allow-list of files and folders. // // All paths are relative to the dir that is passed in as the first argument, and the compressed // file will be placed at that location named `archive-{date}.tar.gz`. func (fs *Filesystem) CompressFiles(dir string, paths []string) (os.FileInfo, error) { cleanedRootDir, err := fs.SafePath(dir) if err != nil { return nil, err } // Take all of the paths passed in and merge them together with the root directory we've gotten. for i, p := range paths { paths[i] = filepath.Join(cleanedRootDir, p) } cleaned, err := fs.ParallelSafePath(paths) if err != nil { return nil, err } inc := new(backup.IncludedFiles) // Iterate over all of the cleaned paths and merge them into a large object of final file // paths to pass into the archiver. As directories are encountered this will drop into them // and look for all of the files. for _, p := range cleaned { f, err := os.Stat(p) if err != nil { fs.Server.Log().WithField("error", err).WithField("path", p).Debug("failed to stat file or directory for compression") continue } if f.IsDir() { err := fs.Walk(p, func(s string, info os.FileInfo, err error) error { if err != nil { return fs.handleWalkerError(err, info) } if !info.IsDir() { inc.Push(&info, s) } return nil }) if err != nil { return nil, err } } else { inc.Push(&f, p) } } a := &backup.Archive{TrimPrefix: fs.Path(), Files: inc} d := path.Join(cleanedRootDir, fmt.Sprintf("archive-%s.tar.gz", strings.ReplaceAll(time.Now().Format(time.RFC3339), ":", ""))) return a.Create(d, context.Background()) } // Handle errors encountered when walking through directories. // // If there is a path resolution error just skip the item entirely. Only return this for a // directory, otherwise return nil. Returning this error for a file will stop the walking // for the remainder of the directory. This is assuming an os.FileInfo struct was even returned. func (fs *Filesystem) handleWalkerError(err error, f os.FileInfo) error { if !IsPathResolutionError(err) { return err } if f != nil && f.IsDir() { return filepath.SkipDir } return nil }